MrgD activation inhibits KCNQ/M-currents and contributes to enhanced neuronal excitability.

نویسندگان

  • Robert A Crozier
  • Seena K Ajit
  • Edward J Kaftan
  • Mark H Pausch
چکیده

The recently identified Mas-related gene (Mrg) family of G-protein-coupled receptors is expressed almost exclusively in dorsal root ganglion (DRG) neurons. The expression of one family member, MrgD, is even further confined to IB4+, nonpeptidergic, small-diameter nociceptors. Although the functional consequences of MrgD activation are not known, this expression profile provides intriguing potential for a role in pain sensation or modulation. In a recombinant cell line, we first assessed the functional significance of MrgD activation by coexpressing MrgD with the KCNQ2/3 potassium channel, a channel implicated in pain. Whole-cell voltage-clamp recordings revealed that bath application of the ligand for MrgD, beta-alanine, resulted in robust inhibition of KCNQ2/3 activity. Pharmacological blockade of G(i/o) and phospholipase C signaling revealed a partial and complete block of the response, respectively. We extended these observations to dissociated DRG neuron cultures by examining MrgD modulation of M-currents (carried primarily by KCNQ2/3). Here too, beta-alanine-induced activation of endogenous MrgD inhibited M-currents, but primarily via a pertussis toxin-sensitive pathway. Finally, we assessed the consequence of beta-alanine-induced activation of MrgD in phasic neurons. Phasic neurons that fired a single action potential (AP) before beta-alanine application fired multiple APs during beta-alanine exposure. In sum, we provide evidence for a novel interaction between MrgD and KCNQ/M-type potassium channels that contributes to an increase in excitability of DRG neurons and thus may enhance the signaling of primary afferent nociceptive neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NGF Inhibits M/KCNQ Currents and Selectively Alters Neuronal Excitability in Subsets of Sympathetic Neurons Depending on their M/KCNQ Current Background

M/KCNQ currents play a critical role in the determination of neuronal excitability. Many neurotransmitters and peptides modulate M/KCNQ current and neuronal excitability through their G protein-coupled receptors. Nerve growth factor (NGF) activates its receptor, a member of receptor tyrosine kinase (RTK) superfamily, and crucially modulates neuronal cell survival, proliferation, and differentia...

متن کامل

KCNQ/M currents in sensory neurons: significance for pain therapy.

Neuronal hyperexcitability is a feature of epilepsy and both inflammatory and neuropathic pain. M currents [IK(M)] play a key role in regulating neuronal excitability, and mutations in neuronal KCNQ2/3 subunits, the molecular correlates of IK(M), have previously been linked to benign familial neonatal epilepsy. Here, we demonstrate that KCNQ/M channels are also present in nociceptive sensory sy...

متن کامل

KCNQ channels in nociceptive cold-sensing trigeminal ganglion neurons as therapeutic targets for treating orofacial cold hyperalgesia

BACKGROUND Hyperexcitability of nociceptive afferent fibers is an underlying mechanism of neuropathic pain and ion channels involved in neuronal excitability are potentially therapeutic targets. KCNQ channels, a subfamily of voltage-gated K(+) channels mediating M-currents, play a key role in neuronal excitability. It is unknown whether KCNQ channels are involved in the excitability of nocicept...

متن کامل

PIP2 Activates KCNQ Channels, and Its Hydrolysis Underlies Receptor-Mediated Inhibition of M Currents

KCNQ channels belong to a family of potassium ion channels with crucial roles in physiology and disease. Heteromers of KCNQ2/3 subunits constitute the neuronal M channels. Inhibition of M currents, by pathways that stimulate phospholipase C activity, controls excitability throughout the nervous system. Here we show that a common feature of all KCNQ channels is their activation by the signaling ...

متن کامل

Phosphatidylinositol 4,5-bisphosphate hydrolysis mediates histamine-induced KCNQ/M current inhibition.

The M-type potassium channel, of which its molecular basis is constituted by KCNQ2-5 homo- or heteromultimers, plays a key role in regulating neuronal excitability and is modulated by many G protein-coupled receptors. In this study, we demonstrate that histamine inhibits KCNQ2/Q3 currents in human embryonic kidney (HEK)293 cells via phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolysis medi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 16  شماره 

صفحات  -

تاریخ انتشار 2007